The generator matrix 1 0 0 1 1 1 2 1 1 1 1 0 2 X^2 1 1 X^2+X+2 X 1 1 1 X^2+X+2 X^2+X+2 X^2+X+2 1 0 X+2 1 X^2 X 1 1 1 X+2 1 X^2 X^2 0 1 X^2+X+2 0 1 0 2 X^2+1 X^2+3 1 X^2 X^2+2 1 3 1 1 X X^2+X X^2+X+2 1 1 X+1 X X+3 2 X^2+X 1 X^2+X+2 1 1 X+3 1 X 3 X+1 X^2+X 0 X^2+1 X^2+X 1 1 X^2+X+3 X^2 0 0 1 X+3 X+1 2 X^2+X+1 X 3 1 X+2 X 3 1 X^2+X X^2+3 X^2+3 X X+1 0 X^2 1 1 X+1 X+3 X^2+1 X^2+2 X^2+X+2 2 1 X^2 1 2 1 3 1 3 X^2+X X^2+1 1 generates a code of length 40 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 37. Homogenous weight enumerator: w(x)=1x^0+442x^37+688x^38+778x^39+681x^40+550x^41+419x^42+254x^43+108x^44+136x^45+20x^46+16x^47+2x^48+1x^50 The gray image is a code over GF(2) with n=320, k=12 and d=148. This code was found by Heurico 1.16 in 0.094 seconds.